If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+22y+18=0
a = 4; b = 22; c = +18;
Δ = b2-4ac
Δ = 222-4·4·18
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-14}{2*4}=\frac{-36}{8} =-4+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+14}{2*4}=\frac{-8}{8} =-1 $
| -4y+4=-6y-12 | | 9d(5d+3)=0 | | 12h=1800 | | 5x-7=3-6x | | 3y/10=-2 | | 3b÷3=45÷3 | | (62-2x)=(77-3x) | | 0.3(10x+25)=4.3(0.2x+5) | | -6y+4=-6y-12 | | y^2+13y-48=0 | | 5x÷5=70÷5 | | 1/2x+3/2+18=20 | | 2/5x-1/2=7/2 | | 2a+8a+4-9=15 | | 7z−1=4z−3 | | 4y+2=54 | | 5=11-1/3x | | W²+9w=52 | | X^2-18x=760 | | 16x=9x+34 | | (1/3)x-7=15 | | 5x+2/3=22 | | 35=3n+27 | | n-(-45)=19 | | (6y+5)=(7y-5) | | 20=8+6p= | | X^2-18x-760=0 | | 4y-3-2y+1=18 | | 40+2y=0 | | 7w+77=0 | | y=4y+3=-3 | | (2x+2)=(3x-6) |